89 3. Seismic tomography 3.4 General conclusion This chapter, supported by several seismic field data examples, demonstrates the possibility of imaging the subsurface structures with seismic tomography. Seismic tomography is able: • to handle acquisitions of various scales and geometries; • to handle single or multi-component data; • to handle direct, reflected or diffracted P or S-body waves; • to produce high-resolution depth or time images; • to provide confidence criteria for the resulting tomogram. The main requirements for seismic tomography to build reliable images are: • high fold coverage; • large azimuthal coverage; • data that preserves travel times and amplitudes; • an initial model (P and/or S-wave velocity and density) that adequately represents the main subsurface features. • low or moderate computational effort. These tomograms may provide useful input data for further processing as pre or post-stack seismic migrations or for full waveform inversion techniques. References Aki K., Lee W.H.K., 1976, Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes 1. A homogeneous initial model, J. Geophys. Res. 81, 4381-4399. Becquey M., Bernet-Rollande J.O., Laurent J., Noual G., 1992, Imaging reservoirs - a crosswell seismic experiment, First Break, 10 (9), 337. Beydoun W.B., Mendes M., Blanco J., Tarantola A., 1990, North Sea reservoir description: Benefits of an elastic migration/inversion applied to multicomponent vertical seismic profile data, Geophysics, 55 (2), 209-217. Beydoun W.B., Mendes M., 1989, Elastic ray-Born K2-migration/inversion, Geophys. J. 97, 151-160. Beydoun W.B., Delvaux J., Mendes M., Noual G., Tarantola A., 1989, Practical aspects of an elastic migration/inversion of crosshole data for reservoir characterization: A Paris basin example, Geophysics, 54 (12), 1587-1595. Brzostowski, M.A. and McMechan G. A., 1992, 3-D tomographic imaging of near-surface seismic velocity and attenuation, Geophysics, 57 (3), 396-403, https://doi.org/10.1190/1.1443254.
RkJQdWJsaXNoZXIy NjA3NzQ=