| Cover |
I |
| Contents |
5 |
| Prefaces |
11 |
| Foreword |
13 |
| J.-L. Mari and G. Paixach |
13 |
| The authors |
15 |
| Introduction |
25 |
| J.L. Mari and G. Paixach |
25 |
| The Role of Geophysics in Geothermal Energy |
25 |
| Glossary of Geothermal Energy |
26 |
| Geothermal Energy in France |
28 |
| Book content |
28 |
| Reference |
29 |
| 1. Overview of the different geothermal systems: role of geophysics in exploration and production |
31 |
| G. Paixach, H. Traineau, F. Bugarel, E. Lasne and C. Maïlhol |
31 |
| 1.1 What is geothermal energy? |
31 |
| 1.2 What are the main geothermal systems? |
37 |
| 1.3 The role of geophysics |
43 |
| References |
49 |
| 2. Surface geophysical methods |
51 |
| J.-L. Mari and G. Paixach |
51 |
| 2.1 Physical properties of rocks and pore space properties |
55 |
| 2.1.1 Porosity |
57 |
| 2.1.2 Permeability |
58 |
| 2.2 Geophysical methods |
61 |
| 2.2.1 Gravity method |
63 |
| 2.2.2 Magnetic method |
68 |
| 2.2.3 Electrical and EM methods |
69 |
| 2.2.4 Seismic methods |
80 |
| Conclusion |
107 |
| References |
108 |
| 3. Borehole geophysical methods |
115 |
| J.L. Mari |
115 |
| 3.1 Conventional logging methods |
116 |
| 3.2 Hydrogeological methods |
120 |
| 3.3 Full waveform acoustic methods |
123 |
| 3.4 Borehole seismic method |
129 |
| Conclusion |
140 |
| References |
141 |
| 4. Towards a revisited geothermal conceptual model in the Upper Rhine Graben |
145 |
| A. Genter, C. Baujard, C. Glaas and V. Maurer |
145 |
| 4.1 Geothermal development in the Upper Rhine Graben |
146 |
| 4.2 Evolution of the geothermal concept during the SsF adventure |
148 |
| 4.3 Pre-exploration phase |
153 |
| 4.4 Optimizing borehole design according to the geological knowledge of the reservoir |
159 |
| Conclusion and perspectives |
160 |
| Acknowledgments |
161 |
| References |
161 |
| 5. DEEP ERT/IP for geothermal exploration
and de-risking |
165 |
| A. Rosselli, C. Truffert, F. Barsuglia, F. Fischanger, A. Coletti, G. Morelli and S. Del Ghianda |
165 |
| 5.1 Context |
165 |
| 5.2 Why electrical resistivity tomography is useful? |
166 |
| 5.3 Deep electrical resistivity tomography for geothermal exploration – an Italian example |
166 |
| 5.3.1 Unconventional ERT data acquisition |
167 |
| 5.3.2 Acquisition methodology |
169 |
| 5.3.3 Acquisition layout |
170 |
| 5.3.4 Current transmissions |
172 |
| 5.3.5 Quality control |
173 |
| 5.3.6 Processing of resistivity and chargeability measurements |
175 |
| 5.3.7 Results |
177 |
| Conclusion |
180 |
| 6. The use of passive seismic methods for Geothermal exploration and monitoring |
181 |
| T. Kremer, J. M. Ars, T. Gaubert-Bastide, K. Khazraj and C. Voisin |
181 |
| Introduction |
181 |
| 6.1 Methods |
185 |
| 6.1.1 Seismological analysis |
185 |
| 6.1.2 Ambient noise seismic interferometry (ANSI) |
189 |
| 6.1.3 Tomography |
190 |
| 6.1.4 Monitoring |
191 |
| 6.2 Passive seismic methods for geothermal exploration |
193 |
| 6.2.1 Seismological analysis |
194 |
| 6.2.2 Ambient noise seismic interferometry (ANSI) |
204 |
| 6.2.3 Integration into the geothermal exploration workflow |
206 |
| 6.3 Geothermal monitoring |
208 |
| 6.3.1 Seismological analysis monitoring |
208 |
| 6.3.2 Ambient noise seismic interferometry monitoring |
210 |
| Concluding remarks |
214 |
| References |
216 |
| 7. Seismic inversion and characterization applied to geothermal energy |
223 |
| R. Baillet, T. Chrest, T. Defreminville and E. Masse |
223 |
| Introduction |
223 |
| 7.1 Technical background |
224 |
| 7.1.1 Seismic gathers and partial stacking |
224 |
| 7.1.2 The subsurface as an isotropic elastic medium |
225 |
| 7.1.3 Convolution and resolution |
226 |
| 7.2 Seismic inversion |
228 |
| 7.2.1 About seismic conditioning |
228 |
| 7.2.2 Wavelet extraction and optimization |
228 |
| 7.2.3 Construction of a low-frequency model |
229 |
| 7.2.4 Performing a seismic inversion |
230 |
| 7.3 Introduction to seismic characterization |
232 |
| 7.3.1 Exploring well response through a petro-elastic model building |
232 |
| 7.3.2 Seismic attributes related to faults and fractures |
234 |
| 7.3.3 Characterization empowered by machine learning |
235 |
| 7.4 Example: identification of lithology, good porosity and fractured areas through a seismic inversion study |
237 |
| Conclusions and perspectives |
239 |
| References |
239 |
| 8. Seismic anisotropy applied to geothermal prospection |
241 |
| R. Baillet, N. Desgoutte, V.Thomas and J. Caudroit |
241 |
| Introduction |
241 |
| 8.1 Technical background |
242 |
| 8.1.1 The HTI and VTI models for anisotropy models |
242 |
| 8.1.2 Azimuthal stacking and required processing |
243 |
| 8.2 Velocity versus Azimuth (VVAz): a shift detection methodology |
244 |
| 8.3 Amplitude versus Azimuth (AVAz): an inversion methodology |
245 |
| 8.4 Ellipse fitting on properties to estimate the anisotropy |
245 |
| 8.5 From anisotropy to fracture attributes |
247 |
| 8.6 Case study: Fracture characterization through azimuthal inversions to prospect the geothermal potential of Geneva basin |
248 |
| 8.6.1 Processing, conditioning, shift detection |
248 |
| 8.6.2 Model-based inversions |
250 |
| 8.6.3 Results and way forward |
251 |
| Conclusions and perspectives |
254 |
| References |
254 |
| 9. Defining high enthalpy geothermal drilling target with multi-physics integrated exploration program. Mayotte’s Petite-Terre Island case study |
257 |
| A. Stopin, C. Dezayes and T. Farlotti |
257 |
| Introduction |
257 |
| 9.1 Integration of magnetotelluric data |
260 |
| 9.2 Electric profile integration |
264 |
| 9.3 Gravimetric data integration |
267 |
| 9.4 Final model |
268 |
| 9.5 Choice of the drilling target |
271 |
| References |
272 |
| 10. Feasibility of monitoring cold fronts of geothermal doublets using 4D active electromagnetic techniques – a field trial in the Dogger play in the Paris Basin |
275 |
| F. Dubois, A. Stopin, F. Bretaudeau and P. Wawrzyniak |
275 |
| Introduction |
276 |
| 10.1 Context |
277 |
| 10.2 Acquisition |
278 |
| 10.3 Receiver conception |
281 |
| 10.4 Survey |
282 |
| 10.5 Data processing |
284 |
| 10.6 Detectability of the cold front |
287 |
| Conclusions |
288 |
| References |
290 |
| Synthesis |
291 |
| G. Paixach and J.L. Mari |
291 |
| A range of geothermal systems |
291 |
| A range of geophysical techniques |
292 |
| Geophysics for geothermal systems |
293 |
| From resource exploration to drilling project de-risking and asset monitoring |
295 |
| Conclusion |
297 |
| J.L. Mari and G. Paixach |
297 |